Mark scheme - Spectroscopy

Questi on	Answer/Indicative content	Mark s	Guidance
	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Structure I has a viable chemical structure of C ₆ H ₉ NO ₂ which has the key features consistent with spectral data AND Most of the data analysed There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Compound I has a viable chemical structure of C6H9NO2 with most of the key features consistent with spectral data AND Some of the spectral data analysed. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Correct determination of empirical formula and/or molecular formula. OR Analyses some of the IR and NMR data. OR Analyses most of the NMR data. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6 (AO3. 1× 4) (AO3. 2× 2)	Indicative scientific points: Empirical and Molecular Formulae C : H : N : O = $\frac{56.69}{120} : \frac{7.09}{10} : \frac{11.02}{10.5} : \frac{25.20}{14.0} : \frac{25.20}{16.0}$ OR 4.72 : 7.09 : 0.787 : 1.575 = 6 : 9 : 1 : 2 • Empirical formula = CeHeNO2 • $m/z = 127.0$ and empirical formula mass (127) used to determine molecular formula as CeHeNO2 Structures of compound I NC $\frac{1}{40}$ $\frac{1}{60}$ \frac

	b		CDCl₃ used as a solvent √ D₂O used to identify OH OR NH protons √	2 (AO1. 1×2)	C=O bond and a methyl group but did not consider the splitting patterns seen in the NMR. Most candidates could correctly work out the empirical and molecular formula but then did not use their analysis of the NMR and IR data to suggest a structure. This limited their response to Level 1. The IR spectrum had no O-H peak from an alcohol or carboxylic acid, but candidates often included these groups in their suggested structures. Example and use required for each mark ALLOW for 1 mark, D ₂ O as a solvent Examiner's Comments Misconception The use of deuterated compounds in NMR analysis was often explained the use in terms of lack of spin but did not give examples (e.g. CDCl3 as a solvent or D2O as for identifying OH/NH protons)
			Total	8	
2		i	Compound CCompound DNumber of peaks3 √8 √	2 (AO3. 2)	
		i	compound C	5 (AO3. 2×5)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names for organic intermediates (question asks for structures ALLOW names of reagents and catalyst Around top arrow, ALLOW 1 of 2 marks if HNO ₃ and H ₂ SO ₄ swapped. i.e. reagent:H ₂ SO ₄ catalyst:HNO ₃ IGNORE references to concentration ALLOW (CH ₃ CO) ₂ O for left arrow IGNORE CH ₃ COOH IGNORE acyl chloride DO NOT ALLOW AlCl ₃ /FeCl ₃ /Fe4
			Total	7	
3		i		$5 \rightarrow 4$ max	ANNOTATE WITH TICKS AND CROSSES, etc. ALLOW ORA throughout

Comparison of branching and points of contact		ALLOW 'The straighter the chain, the more points of contact'
e.g. CH ₃ CH ₂ CH ₂ NH ₂ has longer chain / straight chain / no branches AND e.g. CH ₃ CH ₂ CH ₂ NH ₂ has more points of contact / more surface interaction (between molecules) √ Relative strength of force	(AO 1.2)	 IGNORE comparison using 'primary', 'secondary' and 'tertiary'. <i>Comparison of branching is required</i>. For London forces, ALLOW induced dipole(–dipole) interactions IGNORE IDID OR van der Waals' forces/VDW
e.g. CH ₃ CH ₂ CH ₂ NH ₂ has stronger/more induced dipole(–dipole) interactions OR London forces √	(AO - 2.1)	DO NOT ALLOW CH ₃ CH ₂ CH ₂ NH ₂ has more electrons (number of electrons are the same)
 Hydrogen bonds CH ₃ CH ₂ CH ₂ NH ₂ OR (CH ₃) ₂ CHNH ₂ have hydrogen/H bonds OR (CH ₃) ₃ N has no hydrogen/H bonds √ Relative strength of force Hydrogen bonds are stronger than London forces /permanent dipole interactions √	- (AO	 DO NOT ALLOW 'more energy to break covalent bonds ALLOW little energy is required to break London forces (compared with H bonds) Examiner's Comments Candidates were expected to explain the different boiling points of threamines. Most candidates linked increased branching with less surface contact between molecules, leading to weaker induced dipole interactions (London forces). Fewer candidates linked the decreasing
Comparison of energy required to break force e.g. More energy to break/overcome London forces/intermolecular forces in CH ₃ CH ₂ CH ₂ NH ₂ OR More energy is needed to break H bonds (than London forces) √		 boiling points to less energy being required to break the intermolecular bonds. The highest performing candidates recognised the large difference between the boiling points of the primary and tertiary amines. They the identified the cause: primary amines form hydrogen bonds but tertiary amines do not. This question was answered reasonably well with fewer candidates that in the past describing relative strengths of covalent bonds, a common misconception.
FIRST CHECK MOLECULAR FORMULA and STRUCTURE IF molecular formula = $C_5H_{13}N$ AND correct structureAND correct structureAND evidence of idealAND evidence of ideal \rightarrow 6 gas equationgas equationmarksCorrect up to 87 AND \rightarrow 5 $C_5H_{13}N$ Correct up to 87 \rightarrow 4 marks	6	IF $n = \frac{pV}{RT}$ is omitted, ALLOW when values are substituted into

Rearranging ideal gas equation $n = \frac{pV}{RT} \checkmark$ Unit conversion AND substitution into)	
$n = \frac{PV}{RT};$ • R = 8.314 OR 8.31 • V = 72(.0) × 10 ⁻⁶ • T in K: 373 K e.g. <u>1.00 × 10⁵ × 72.0 × 10⁻⁶</u> 8.314 × 373		Calculator: $n = 2.321740325 \times 10^{-3}$ from 8.314 From 8.31, $n = 2.322857889 \times 10^{-3}$
Calculation of n $n = 2.32 \times 10^{-3} \text{ (mol) } \checkmark$ Calculation of M $M = \frac{0.202}{2.32 \times 10^{-3}} = 87 \checkmark$	(AO 3.2)	ALLOW elements in any order ALLOW molecular formula = $C_3H_9N_3$ ALLOW other molecular formulae of an amine that has $M = 87$, e.g. C_4H_9NO
<i>Molecular formula</i> C₅H ₁₃ N √ Molecular formula required		ALLOW any combination of skeletal OR structural OR displayed formul as long as unambiguous
Structure of amine A from C₅H₁₃N √	(AO 3.2)	ALLOW structures below from molecular formula = $C_3H_9N_3$ H ₂ N C=C H ₃ C NH ₂ H ₂ N H ₂ N H ₂ N H ₂ N H ₂ N C=C H ₂ N H ₂
$H_{3}C$ $H_{2}C$ H		 ALLOW ECF but only if structure has calculated <i>M</i>_r AND has 3 peaks in ¹³C NMR spectrum. Examiner's Comments Most candidates rearranged the ideal gas equation correctly to make <i>n</i> the subject. They then substituted correct values for <i>p</i>, <i>V</i>, <i>R</i> and <i>T</i> into the equation, with correct unit conversions. Most candidates then
H ₃ C CH ₃ H ₃ C H ₃ C CH ₃ H ₃ C OR H ₂ OR H ₃ C Use of 24000 3 marks max possible for use of 72.0 cm ³ OR 0.720 dm ³ by ECF Calculation		calculated <i>n</i> correctly as 2.32×10^{-3} and combined this value with the mass of 0.202 g to derive the molecular formula as 87. Lower-attaining candidates often made an error in their conversion of cm ³ into m ³ , by multiplying by 10^{-3} rather than 10^{-6} . This error resulted a value of <i>n</i> as 2.32 and the unrealistic molecular mass of 8.7 × 10^{-3} , from which a molecular formula is impossible. Candidates in this positio are advised to check back at the unit conversions in the working. Very
e.g. $n = \frac{72.0}{24000} = 3.00 \times \frac{\text{No mark}}{(calculati)}$		few candidates did not convert 100°C into 373 K. Candidates with the correct molecular formula of 87 usually suggested

			on much simpler) $M = \frac{0.202}{3.00 \times 10^{-3}} = 67.3 (\checkmark F) EC$ Molecular formula = $\checkmark EC$ C_4H_5N F Structure $\checkmark EC$ F		C5H13N as the molecular formula. A significant number quoted C ₅ H ₁₁ NH ₂ . This response was not credited as it is not a 'molecular' formula. There are several possible structures of C ₅ H ₁₃ N with three ¹³ C NMR peaks and any were credited. Error carried forward was applied from a different molecular mass for both the molecular formula and a structure. This emphasises the importance of working within calculation; credit will always be given for a correct method. Instead of using the ideal gas equation, some candidates used the molar gas constant at room temperature and pressure, 24.0 dm3, which gives a molecular mass of 67. This simplified approach could only gain the final 2 marks for this question: a molecular formula (with an error carried forward value of 67, e.g. C ₄ H ₅ N) and a structure of an amine with this molecular formula and 3 peaks in the ¹³ C NMR spectrum.
			Total	10	
4	а	i	ethyl 3-bromopropanoate √	1(AO 1.2)	 ALLOW one word: ethyl3-bromopropanoate OR more words, e.g. ethyl 3-bromo propanoate IGNORE lack of hyphens, or addition of commas <u>Examiner's Comments</u> This demanding question discriminated well. The most able candidates were able to apply the nomenclature rules to name ester A correctly as ethyl 3-bromopropanoate. Common incorrect responses included ethyl 1-bromopropanoate and ethyl 4-bromopropanoate.
		i i	$\begin{bmatrix} 0 & & & \\ Br & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	5(AO 2.5 ×5)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW in either order ALLOW any vertical bond to the OH group e.g. ALLOW \downarrow OR \downarrow OH RO DO NOT ALLOW OH- ALLOW in either order For reaction with OH-, ALLOW one mark for $GR \qquad \qquad$

				Examiner's Comments This question required candidates to apply their knowledge of hydrolysis reactions to ester A. The majority of candidates were able to show 3-bromopropanoic acid and ethanol in the top two boxes to secure two marks. The organic products from the alkaline hydrolysis proved more difficult. Many candidates identified ethanol as a product in one of the lower boxes but lower ability responses showed the ethoxide ion. Some candidates drew the 3-bromopropanoate ion as the other product. Higher ability candidates realised that the Br atom would be replaced by an OH group and the best responses showed the correct carboxylate ion. Examiners were encouraged by the number of excellent responses seen and the majority of candidates scored 4 or 5 marks.
	i i i	hydrolysis √	1(AO 1.1)	IGNORE 'acid' and 'alkaline'' IGNORE nucleophilic substitution
b		Proton environmentChemical shiftSplitting pattern13.0–4.3Triplet22.0–3.0Triplet33.0–4.3Quartet40.5–1.9TripletMark by column Chemical shift: all 4 correct √√ 3 correct √Splitting pattern: all 4 correct √√ 3 correct √	4(AO 3.1 × 4)	ALLOW δ values ± 0.2 ppm, as a range or a value within the range ALLOW integers for δ values e.g. 2 is equivalent to 2.0 ALLOW quadruplet for quartet ALLOW diagrams to show splitting pattern e.g. M for triplet for quartet ALLOW splitting patterns shown as numbers i.e. '3' for triplet, '4' for quartet Examiner's Comments This question was answered well and most candidates scored full marks. A common error was the chemical shift of environment 2, which was sometimes shown as 9.0-10.0. Some candidates gave incorrect splitting patterns for environment 2, stating it would give a singlet, rather than a triplet. This is presumably the result of focusing on the carbon atom to the right of the environment with no H atoms. Candidates should be reminded to consider adjacent carbon atoms on both sides of a particular environment, rather the just looking in one direction.
с		Br OH OR	1(AO 3.1)	 ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous <u>Examiner's Comments</u> This question required candidates to use both pieces of information to deduce that B was a carboxylic acid with two equivalent carbon atoms.

	Br OR OR Br OH OH		Many candidates were able to suggest a suitable structure. However some candidates did not use all the information and it was common to see responses that showed an ester or a straight chain carboxylic acid.	
d	IF answer on answer line = 24018, AWARD 2 marks IF answer on answer line = 27600, AWARD 1 mark 	2(AO 2.2 ×2)	ALLOW ECF from incorrect M_r Alternative method based on repeat unit: M_r of 200 repeat units = 200 x 120 = 24000 \checkmark M_r of polymer = 24000 + 1 + 17 = 24018 \checkmark Examiner's Comments A variety of responses was seen in this demanding question. In general candidates adopted one of two approaches. The most common was to multiply the Mr of 2-hydroxybenzoic acid by 200 and then subtract the mass of the 199 water molecules removed during polymerisation. The other approach used the Mr of the repeat unit. This was multiplied by 200 and the mass of H and OH at each end of the polymer was added to give the final answer. Many candidates were successful with the first step of their approach, but the best responses included the second step taking into account the Mr of water. A significant number of candidates used an incorrect value for the Mr in their first step. Candidates are advised to draw out the structure of a compound before determining the Mr. This is particularly important when only a name is given in the question.	
e i	 * Refer to marking instructions on page 4 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) Correct calculation of the mass of (CH₃)₂CHCHO. AND Planned synthesis includes oxidation of aldehyde and formation of ester C with most of the reagents and conditions identified and equations are mostly correct. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Calculation of the mass of (CH3)2CHCHO is partly correct AND Planned synthesis includes 	6 (AO 3.3 ×6)	Indicative scientific points may include: <u>Calculation of mass of (CH₃)₂CHCHO</u> Using moles $n(ester) = \frac{12.75}{102.0}$ $= 0.125 \text{ (mol)}$ $n((CH_3)_2CHCHO) = 0.125 \times \frac{100}{40}$ $= 0.3125 \text{ (mol)}$ $Mass of (CH_3)_2CHCHO = 72.0 \times 0.3125 = 22.5 \text{ g}$ Using mass $Theoretical mass of ester = 12.75 \times \frac{100}{40}$ $= 31.875 \text{ (g)}$ $Theoretical n((CH_3)_2CHCHO) = \frac{31.875}{102}$ $= 0.3125 \text{ (mol)}$ $Mass of (CH_3)_2CHCHO = 72.0 \times 0.3125 = 22.5 \text{ g}$ ALLOW small slip/rounding errors such as errors in <i>Mr</i> e.g. use of 71 instead of 72 for (CH_3)_2CHCHO $= 3.60 \text{ g from } 0.125 \times \frac{40}{100} \times 72$	

oxidation of aldehyde and formation of ester C with some of	(% yield inverte
the reagents and conditions	
identified	Mass = 9.00 g from 0.125 × 72
OR	
Attempts to calculate mass of	(% yield omitte
(CH3)2CHCHO but makes little	
progress AND	Synthesis: reagents and conditions
Planned synthesis includes	<i>Step 1:</i> Oxidation of aldehyde (CH ₃) ₂ CHCHO
oxidation of aldehyde and	
formation of ester C with most of	• Reagents: Cr_2O7^2 -/H ⁺
the reagents and conditions	Conditions: reflux
identified and equations for each	
step are mostly correct	$(CH_3)_2CHCHO + [O] \rightarrow (CH_3)_2CHCOOH$
	Step 2: Formation of ester C
There is a line of reasoning	
presented with some structure.	 Reagents: methylpropanoic acid/(CH₃)₂CHCOOH and
The information presented is	methanol/CH ₃ OH
relevant and supported by some	Conditions: acid (catalyst) reflux/heat
evidence.	Equation:
Level 1 (1-2 marks)	
Calculation of the mass of	$(CH_3)_2CHCOOH + CH_3OH \rightarrow (CH_3)_2CHCOOCH_3 + H_2O$
(CH ₃) ₂ CHCHO is partly correct	
OR	IGNORE attempts to form methanol in synthesis
Planned synthesis includes both	Examiner's Comments
steps with some of the reagents	
and conditions identified	This question was marked using a level of response mark scheme. Mos
OR	candidates gave a response worthy of at least Level 2 (3-4 marks) by
Attempts equations for both steps	either providing the synthetic steps with reagents and/or equations for
but these may contain errors	the synthesis of ester C as well as calculating the mass of 2-
OR Describes one step of the	methylpropanal required. Exemplar 3, below, shows a frequently seen
synthesis with reagents, conditions	Level 2 response. The best performing candidates determined the mass
and equation mostly correct	correctly and showed the synthesis efficiently, using equations to
	communicate the preparation of ester C and received Level 3 (5-6
There is an attempt at a logical	marks). Some responses focused solely on the 2-methylpropanal and
structure with a line of reasoning.	suggested it would be both oxidised and reduced with each of the
The information is in the most part	products being used to form an ester. Others omitted the mass
relevant.	calculation or gave only a partial synthesis. Such responses received Level 1 (1-2 marks).
0 mortes	
0 marks	
No response or no response worthy of credit.	
	Exemplar 3

i	Y (43) = (CH ₃) ₂ CH ⁺ √ Z (71) (CH ₃) ₂ CHCO ⁺ √ If '+' charge is missing/incorrect but the structures of both fragments are correct, award one mark	2(AO 2.7 × 2)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW positive charge to be anywhere on the structure For Y and Z, ALLOW structure of a feasible fragment ion formed from ester C $H_3C - C - C - C - C - C - C - C - C - C -$

			to achieve one mark if both fragments were correct. So the majority of candidates scored one or two marks in this part.
	Total	22	
	 * Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Structure is CH₃C₆H₄CH(CH₃)COOH AND Most of the data analysed. There is a well-developed line of 		Indicative scientific points: <u>Empirical and Molecular Formulae</u> • $C: H: O = \frac{73.17}{12.0} : \frac{7.32}{1.0} : \frac{19.51}{16.0}$ = 6.10 : 7.32 : 1.22 = 5 : 6 : 1 • Empirical formula = C ₅ H ₆ O • uses <i>m/z</i> = 164.0 to determine molecular formula as C ₁₀ H ₁₂ O ₂
5	reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) A viable aromatic structure of C ₁₀ H ₁₂ O ₂ that contains C=O AND most key features consistent with spectral data AND Some of the spectral data analysed There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks)	6(AO 1.2 × 2)(AO 3.1 × 2)(AO 3.2 × 2)	Structure ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Key features of an aromatic structure consistent with spectral data • COOH group • 4 aromatic H atoms • single H atom that would give a quartet • CH ₃ group that would give a doublet • CH ₃ group that would give a singlet Correct Structure • CH ₃ C ₆ H4CH(CH ₃)COOH ALLOW 2-, 3- OR 4- substitution of ring i.e. $\int_{C+1}^{C+1} \int_{C+1}^{C+1} \int_$
	Correct determination of empirical formula and/or molecular formula. OR Analyses some of the IR and NMR data. OR Analyses most of the NMR data. <i>There is an attempt at a logical</i> <i>structure with a line of reasoning.</i> <i>The information is in the most part</i> <i>relevant.</i> 0 marks No response or no response worthy of credit.		or H ₃ C \rightarrow

- peak at 2300–3700 (cm⁻¹) is O–H
- peak at ~1720 (cm⁻¹) is C=O
- unknown is a carboxylic acid

ALLOW ranges from *Data Sheet* IGNORE references to C–O peaks

Examiner's Comments

Candidates are confident in tackling questions requiring spectral analysis. Most candidates were able to determine the empirical and molecular formula of the unknown compound and analyse the IR and NMR data. A number of excellent responses were seen which included interpretation of the peak splitting in the NMR spectrum. However, many candidates were unable to suggest a structure that matched their spectral analysis. The majority of structures seen were aromatic but not all contained the carboxylic acid group. Some candidates focused on the NMR data and suggested a structure that was consistent with some of these peaks and included a two substituents of the ring or a degree of chain branching. Lower ability responses often showed a simpler structure of a monosubstituted ring with a straight chain. Stronger responses were able to use all the data to suggest a correct structure as demonstrated in Exemplar 9. Examiners were impressed with the problem solving ability shown by candidates and a significant proportion of responses were given six marks.

Exemplar 8

	C: 73:17	H: 7.32	0: 19.51	
	12	1	16	
	= 6:0975	= 7.32	=).219375	
			1.219375	
			=)	
			color mase is 164 so	
			s Cio Hia Oa	
	The share mak al	1700 cm ⁻¹	is due hs a. C=O group	
			is due to a O-H. The	
	sugers a care	ordie acio	is present.	
	Additional answer space if requi			
	leak at 1.5 ppm	is due he	s a CHz group. It is a d	Capper
bei	ing adjacent to 1	proton Pest	at 24 pr is due	bo
	10-CH3 group. 12	is a sig	let due lo being adjacen	6
(O alohons. Peak at	7.2 0	n is due to a b	enzere
			?pp. is due to a	
	HC - C 90000.	Je is a	quarter due to	
			Sprokens.	
	acing callon	*"10	Syroians.	
	a Va	END OF QUESTION	PAPER CH3	
	KIS		CH3	
	KDA			
	(ACAR) - H	2		
		All Also	C - C N	4 .
		XI Az	CH3 OI	H

This candidate starts their analysis by determining the empirical and molecular formula of the unknown compound. Next the IR and NMR data

			is analysed in a clear, logical fashion. Although not shown in this report, the candidate had annotated the spectra, a good strategy. At the end of the response the candidate has determined a possible structure. Notice how the candidate has crossed out the first attempt at a structure. This is much better than rubbing out a pencil diagram and re-drawing over the space as this often leads to unclear images that are difficult for examiners to read. This candidate received full marks in this question.
	Total	6	
	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question.		Indicative scientific points: <u>Empirical and Molecular Formula</u>
	Level 3 (5–6 marks) Compound is a structure of C ₆ H ₁₂ O ₃ that is consistent with splitting pattern and chemical shifts in NMR spectrum.		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	AND Comprehensive reasoning with most of the data analysed.		• uses $m/z = 132.0$ to determine molecular formula as C ₆ H ₁₂ O ₃ 1 <u>H NMR analysis</u>
	There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.		Spectrum: • $δ = 4.0$ ppm, quartet, 1H, CH ₃ –CH–O • $δ = 1.3$ ppm, singlet, 6H, (CH ₃) ₂ –C • $δ = 1.2$ ppm, doublet, 3H, CH ₃ –CH–
	Level 2 (3–4 marks) Compound has a feasible chemical structure that is consistent with the		 Without D₂O: Peak at 11.0 ppm COOH or OH
6	splitting pattern in NMR spectrum but may have incorrect molecular formula.	6	peak at 3.6 ppm OH Note: Data Sheet shows O-H chemical shift can occur around 11.0 ppm
	AND Reasoning provided with some of the data analysed.		
	There is a line of reasoning presented with some structure. The information presented is		Structure ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	relevant and supported by some evidence.		Contains
	Level 1 (1–2 marks) Correct determination of empirical formula and/or molecular formula. OR Analyses most of the NMR data. OR Attempts to determine empirical and/or molecular formula AND analyses some of the NMR		 region that gives doublet and quartet e.g. H Or C C C C C C C H H C region that gives singlet

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	e.g. CH_3 C - C C - C C C C C C C C
0 marks No response or no response worthy of credit.	Examples of structures consistent with splitting and chemical shift in NMR
	H_3C
	$H_{3}C - C - C - C - C - C - C - C - C - C -$
	н ₃ ссон 0сн сн ₃
	Note: there may be other possible structures that are consistent with the splitting pattern and chemical shifts in NMR – if an alternative structure is seen, please contact your team leader
	Examiner's Comments
	Most candidates were able to determine the empirical and molecular formula of the unknown compound. A number of excellent and clear response were seen, where the NMR data was explained, including interpretation of the additional peaks observed without D ₂ O. However many candidates were unable to suggest a structure that matched their NMR interpretation. Some candidates used the quartet, doublet and singlet to suggest a structure that would give rise to this splitting pattern, but which was not consistent with the chemical shifts, see Exemplar 12. Such responses received a level 2 mark (3-4). Stronger responses were able to use all the data to suggest a correct structure. The most common was CH ₃ CH(OH)C(CH ₃) ₂ COOH although other viable structures, including CH ₃ CH(OH)COC(CH ₃) ₂ OH, were also seen. Examiners were impressed with the problem solving ability shown by candidates and a
	significant proportion of responses were credited six marks.

				Exemplar 12
				<u>C H O</u> <u>su su 9.10 36.36</u>
				12 16 empirical formula=CityO
				4.545 9.10 2.2725 Ur 4.4 2 4 1 132 = 3
				<u>ци</u>
				molecular formula = C2 HuO x3 = C6 H12 O3
				peak at 1-2 ppm - Ker HE - R. Hs a
				peor integral of 3 -> CH3
				peak at 1.3 ppm = HC-B. Sisclet so adjacent C has no protons. Integral of 6- (tts).
				Pearl at 4 ppm indicative of the-0.
				Quartet so acjasent C. has 3 protons.
				Integral_ofA
				D2. D at Uppm = - C - Ott and 3, 5ppm
				$\frac{1}{1} \frac{1}{1} \frac{1}$
				$\frac{M \cdot f \cdot - \sum C_{a} H_{12} O_{3}}{Q_{a} + Q_{b} + H}$
				d - d - d - d - e - e = e = H
				HB'CH H H
				$\frac{-C-c-c+}{c-c+} = \frac{C-c-c+}{c+}$
				HO CH3 HO CH3 OH
				This logically presented Level 2 response uses the elemental analysis
				and mass spectrum data to determine the correct empirical and
				molecular formula of the unknown compound. The peaks in the NMR
				spectrum are analysed in detail, with a clear explanation of the splitting
				patterns. A comment about the two additional peaks observed when the
				spectrum is run without D_2O is also provided. The response concludes
				with a structure of $C_6H_{12}O_3$ that would show a singlet, doublet and
				quartet in its ¹ H NMR spectrum. However, this structure is not consistent
				with the chemical shift values shown in the spectrum provided. In
				particular this structure would produce a quartet between 2.0–2.9 ppm,
				rather than at 4.0 as in the spectrum shown. Consequentially this
				response does not achieve Level 3. When tackling questions of this type
				candidates are advised to check that a proposed structure would
				produce peaks in the correct region of the NMR spectrum to ensure it is
				totally consistent with the data analysed.
		Total	6	
		FIRST CHECK ANSWER ON		If there is an alternative answer, Apply ECF
		ANSWER LINE IF answer = 7.5 ×		
		10 ^{–₄} award 2 marks		Alternative method
				[K] in g dm ⁻³ with peak area of 5.9
7	;	[K] in mol dm ⁻³	2	5.9
<i>'</i>	1	[K] in mol dm ^{−3}	4	9.13 × $10^{-2} \times \frac{5.9}{4.3}$ OR 9.13 × $10^{-2} \times 1.37$
		9.13 × 10 ⁻²		
		$\frac{9.13 \times 10^{-2}}{166} = 5.50 \times 10^{-4} \text{ (mol dm}^{-3}$		= 0.125 OR 0.13 (g dm ⁻³) √
				Calculator: 0.125272093
		[L] from peak areas		[L] in mol dm ^{−3}

5.50 × 10^{-4} × $\frac{5.9}{4.3}$ OR 5.50 × 10^{-4} ×		OR $\frac{0.125}{166} = 7.5 \times 10^{-4}$ $\frac{0.13}{166} = 7.8 \times 10^{-4} \text{ (mol dm}^{-3}) \checkmark$
= 7.5 × 10 ⁻⁴ (mol dm ⁻³) √ 2 SF Required		Common errors: Common errors: Award 1 mark for:
		• 0.099(from $\frac{9.13 \times 10^{-2}}{166} \times 180$)
		• 6.9×10^{-4} (from $\frac{0.125}{180}$)
		• 7.2×10^{-4} (from $\frac{0.13}{180}$)
		• 7.0×10^{-4} (from $\frac{0.25272093}{180}$)
		Examiner's Comments
		This question required candidates to apply their knowledge of gas chromatography and the mole to solve this problem. Most candidates recognised the need to use the relative peak areas to determine the relative proportion of M . Many also realised that division by the molar mass was required to ensure the final answer was given in mol dm ⁻³ . However, some used molar mass of M rather than K in this step, leading to an answer of 7.0×10^{-4} mol dm ⁻³ .
		Answer = $7.5 \times 10^{-4} \text{ mol dm}^{-3}$
ester J		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
HO V		L and M can be identified either way round
i esters L and M	3	IGNORE 'C₃H ₇ ' in L and/or M as ambiguous (<i>question requires structures</i>)
		IGNORE connectivity of phenol OH group (marks are for structures of alkyl groups)
но		Examiner's Comments
HO HO		Examiners were encouraged by the number of good responses to this problem solving question. Most candidates achieved at least one mark in this part, often from a correct structure of J . Although many candidates deduced that the R group for both L and M consisted of 3 C atoms and 7 H atoms, only the highest ability candidates were able to join these correctly. A small but significant number of responses showed R groups

				that involved O atoms, despite the prompt that the R represented an alkyl group. Candidates are advised to read questions carefully.
		Total	5	
8 i	i	Number of peaks2 marks2-nitrophenol AND 3-nitrophenol have six peaks/environments/types of carbon √	3	IGNORE any numbers shown on structures ALLOW 1 mark only IF a response identifies that all the compounds have 6 peaks/environments/types of C OR all the compounds have 4 peaks/environments/types of carbon IGNORE chemical shifts DO NOT ALLOW ECF from an incorrect number of peaks/environments/types of carbon Examiner's Comments This question required candidates to apply their knowledge of ¹³ C NMR spectroscopy to deduce the number of different carbon environments in each of the nitrophenols shown. The best responses were succinct, stating that it is possible to distinguish 4-ntirophenol from the other two after deducing the correct number of carbon environments for each compound. Lower ability candidates' responses did not identify the symmetry in 4-nitrophenol and suggested all three compounds would produce six peaks, therefore making it impossible to distinguish between them.
	ii	(In phenol) a (Ione) pair of electrons on O is(partially) delocalised/donated into the π- system / ring √ Electron density increases/is higher (than benzene) √ ORA (phenol) is more susceptible to electrophilic attack OR (phenol) attracts/accepts electrophile/HNO ₃ more OR (phenol) polarises electrophile/HNO ₃ more √ ORA	3	ALLOW the electron pair in the p-orbitals of the O atom becomes part of the π-system / ring ALLOW diagram to show movement of lone pair into ring ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled/ into π-system / ring IGNORE activating IGNORE charge density IGNORE phenol reacts more readily (no reference to electrophile) ALLOW NO2 ⁺ for electrophile Examiner's Comments The relative reactivity of phenol is well known by candidates at this level and the majority scored two or three marks. Candidates who did not score full marks gave imprecise or vague explanations. This included reference to 'higher charge density' or 'higher electronegativity' of the phenol ring, rather than 'higher electron density'.

		Total	6	
9	а	Empirical formula Mole Ratio C : H : O = $5.88 : 5.92 :$ 1.47 \checkmark Empirical formula = C ₄ H ₄ O \checkmark Molecular formula Molecular formula = C ₈ H ₈ O ₂ AND Evidence of 136 in working or from labelled peak in spectrum \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES $\frac{70.58}{12.0} \div \frac{5.92}{1.0} \div \frac{23.50}{16.0}$ ALLOW 4:4:1 if linked to C:H:O Alternative method for 3 marks: C: $\frac{136 \times 70.58/100}{12.0} = 8$ H: $\frac{136 \times 5.92/100}{1.0} = 8$ O: $\frac{136 \times 23.50/100}{16.0} = 2$ Examiner Comments The empirical formula was correctly calculated by all but the weakest candidates. The final mark was more difficult to obtain as it required evidence that the molar mass had been determined from the mass spectrum and used in establishing the molecular formula.
	b	Functional groups Phenol AND ketone √ Explanation Links phenol to (weak) acidity AND no reaction with Na ₂ CO ₃ (so not carboxylic acid) √ Links 2,4-DNP(H) or Brady's reagent observation to carbonyl AND Tollens' reagent observation (so not an aldehyde) √	3	 DO NOT ALLOW any other functional groups for first marking point. ALLOW identity of functional groups in the explanation if not stated on functional group prompt line. ALLOW "aldehyde or ketone" in place of carbonyl Examiner Comments Many candidates were able to suggest that the compound contained a ketone but found it more difficult to indicate the presence of phenol. Approximately 20% of the entry obtained all three marks. When explaining the presence of the ketone some failed to indicate that the 2,4-DNP test indicated that the compound must contain a carbonyl and just focused on the lack of reactivity with Tollens'. Answers suggesting the molecule contained a ketone as no reaction was observed with Tollens' did not gain credit when no reference to carbonyl was seen. Those who recognised the presence of a phenol explained that the only acidic functional group that does not react with sodium carbonate is a phenol.
	с	Carbon NMR analysis Peaks between 110–160 ppm are the (four) aromatic (carbon environments) √ Compound contains a C=O between 190 – 200 ppm AND Compound contains a C-C at 20 –	3	 ALLOW peaks to be identified by: Peaks labelled on spectrum Peaks indicated on a chemical structure Peaks indicated from within text Note: If identifying aromatic peaks from the spectrum all four peaks should be indicated. ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Examiner Comments When interpreting a carbon-13 NMR spectrum, candidates should be advised to fully label any peaks. Many candidates failed to indicate the

			Total	6	
1	а	i	Reagent and observation sodium carbonate AND Fizzing/effervescence/bubbling ✓ Equation Correctly balanced equation ✓ e.g. 2RCOOH + Na ₂ CO ₃ →	2	Note: both reagent and observation are required for first mark ALLOW name or formula for any suitable carbonate e.g NaHCO ₃ , potassium carbonate etc. ALLOW reagent from equation if not stated elsewhere
		i	2RCOONa + CO ₂ + H ₂ O Reagent and observation Tollens' (reagent) AND Silver (mirror) √ Equation RCHO + [O] → RCOOH √	2	Note: both reagent and observation are required for first mark ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW H ⁺ /Cr ₂ O7 ²⁻ OR acidified (potassium/sodium) dichromate AND Orange to green (<i>this would identify the aldehyde from the carboxylic acid, ketone and esters</i>)
	b		2,4−dinitrophenylhydrazine AND Orange/yellow/red precipitate √	1	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
	с	i	CH ₃ COOC(CH ₃) ₃ + NaOH \rightarrow CH ₃ COONa + (CH ₃) ₃ COH CH ₃ COONa \checkmark Rest of equation correct \checkmark OR (CH ₃) ₃ CCOOCH ₃ + NaOH \rightarrow (CH ₃) ₃ CCOONa + CH ₃ OH (CH ₃) ₃ CCOONa \checkmark Rest of equation correct \checkmark	2	Note: the hydrolysis of either ester may be given ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae of products <i>(question requires</i> <i>structures of products to be shown)</i>
		i	Reagent and observation H ⁺ /Cr ₂ O7 ^{2−} OR acidified (potassium/sodium) dichromate AND Orange to green (with CH ₃ OH) √ Equation	2	

	CH ₃ OH + [O] → HCHO + H ₂ O OR CH ₃ OH + 2[O] → HCOOH + H ₂ O \checkmark		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae <i>(question requires structures of organic compounds to be shown)</i>
	 ¹³C NMR (1 mark) (It is) not possible to identify (the esters) with ¹³C NMR AND (both) spectra would contain four peaks (with similar chemical shifts) √ ¹H NMR (2 marks) (It is) possible to identify (the esters) with ¹H NMR (¹H NMR spectrum of) CH₃COOC(CH₃)₃ has a singlet/peak between 2.0–3.0 (ppm) (¹H NMR spectrum of) (CH₃)₃CCOOCH₃ has a singlet/peak between 3.0–4.3 (ppm) All three correct statements√√ 	3	ALLOW 'same number of peaks' in place of 'four peaks' ALLOW any value or range of values within 2.0–3.0 ALLOW any value or range of values within 3.0–4.3
d	Any two correct statements \checkmark Possible structures for ketone (2 marks) $CH_3 - C - CH_2CH_2CH_3$ $CH_3CH_2 - C - CH_2CH_3$ $CH_3CH_2 - C - CH_2CH_3$ $CH_3 - C - CH_3$ $CH_3 - C - CH_3$ CH	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of ketones

	Aldehyde (3 marks) Peak at (δ) 1.2 shows HC–R AND No H on adjacent C atom as peak is singlet √		
	Peak at (δ) 9.6 shows H–C=O AND No H on adjacent C atom as peak is singlet \checkmark H ₃ C $\xrightarrow{CH_3}_{C} \xrightarrow{CH_3}_{C} \xrightarrow{H_3}_{CH_3}$		
	OR (2,2−)dimethylpropanal √		
	Total	17	
1	 *Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Structure of J identified as CH₃CH₂C(CH₃)₂CN AND/OR A comprehensive analysis with most of the spectral data analysed and few omissions. There is a well-developed line of reasoning which is clear and logically structured. The 	6	LOOK ON THE SPECTRA for labelled peaks. Indicative scientific points may include: Empirical and Molecular Formula of J C: H: N = 74.17/12 : 11.41/1 : 14.42/14 6.18 : 11.41 : 1.03 $\circ \qquad 6 : 11 : 1$ $\circ \qquad 6 : 11 : 1$ $\circ \qquad Empirical formula of J = C_6H_{11}N$ • uses $m/z = 97.0$ and empirical formula to determine molecular formula of J as C ₆ H ₁₁ N
2	logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Analysis may be incomplete and structure of J identified. OR Thorough analysis of one aspect of the information given in question and structure of J may be	0	1H NMR spectrum • $\delta = 0.9$ ppm, triplet, CH ₃ -CH ₂ -(C-) • $\delta = 1.4$ ppm, singlet, (CH ₃) ₂ C ⁻ • $\delta = 1.6$ ppm, quartet, CH ₃ -CH ₂ ⁻ (C-)
	incorrectly identified.		
	There is a line of reasoning presented with some structure. The information presented is		 IR Spectrum and Structure of J o peak at 2220−2260 (cm⁻¹) is C≡N

			relevant and supported by some evidence. Level 1 (1–2 marks) An attempt at a simple analysis. OR Explains one scientific point thoroughly with a few omissions. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks No response or no response worthy of credit.		• Correct structure of J $CH_3 - CH_2 - CH_3 - CH_3 - CH_3$ $CH_3 - CH_2 - CH_3 - CH_3$ ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
			Total	6	
1 3	а	i	1H NMR spectrum for 2-aminopChemical shift, δ/ppm Relative peak area $0.8 - 2.0$ 3 $2.3 - 3.0$ 1 $3.3 - 4.2$ 2	3	One mark for each correct row ALLOW δ values as a range or a value within the specified range. ALLOW δ values +/- 0.2 ppm. ALLOW a response that implies a splitting into two for a doublet etc. ALLOW sextet/hextet/six (or more than 5) as alternative to multiplet Relative peak area = CH /3H etc. penalise once Examiner's Comments Although it could be argued that this question tested the same skill three times, the full range of marks was awarded and errors were seen in the chemical shift, relative peak area and splitting pattern. Fully correct responses included either a chemical shift value within the range specified on the data sheet or a range that matched the one given on the data sheet.
		i	<u>M[*] peak at 75</u> (peak 1) CH ₃ CH(NH ₂)CH ₂ OH ⁺ /C ₃ H ₉ NO ⁺ ✓ <u>Fragment peak at 44</u> (peak 2) CH ₃ CH(NH ₂) ⁺ /C ₂ H ₆ N [*] ✓	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Positive charge is essential but ALLOW maximum of one mark if both formulae are correct AND neither species has a positive charge Examiner's Comments Although peak 2 was often correct, the species responsible for the M+ peak was often missing a positive charge. Possibly students have learned that the particles become charged as part of the fragmentation process and don't realise that only charged particles can be detected by a mass spectrometer.

	b	i	Ethanolic ammonia OR ammonia/NH₃ AND ethanol √	1	ALLOW ammonia in a sealed tube ALLOW dilute ethanolic ammonia/NH ₃ IGNORE heat ALLOW alcohol for ethanol DO NOT ALLOW any reference to water or hydroxide ions Examiner's Comments A well answered question. Some candidates forgot to use a solvent or suggested the use of aqueous ammonia.
		i	(compound D) $H \xrightarrow{CH_3} H$ $H \xrightarrow{C} CH_2OH$ $H_3C \xrightarrow{C} CH_2OH$ $H_3C \xrightarrow{C} CH_2OH$	1	 ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments This question discriminated well. Although there were very few blank pages, many incorrect structures were seen.
	с	i	Alcohol AND Amide/peptide √	1	IGNORE phenol IGNORE hydroxyl/hydroxy IGNORE attempts to classify alcohol or amide as primary, secondary or tertiary DO NOT ALLOW hydroxide Examiner's Comments Generally well answered but incorrect functional groups included carbonyl and amine.
		i	OH COH OH OH NHs*	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + on N or H i.e. ⁺ NH ₃ or NH ₃ ⁺ ALLOW NH ₃ ⁺ Cl ⁻ Examiner's Comments Many candidates were able to score one mark for this question but the amine group was often not protonated and it was surprisingly common to see the amine group as NH ₂ ⁺ .
			Total	10	
1 4	а		<u>Reducing agent</u> NaBH₄ / sodium tetrahydridoborate(III) / sodium borohydride√ <u>Equation</u>	1	ALLOW LiAIH ₄ /lithium tetrahydridoaluminate(III)/lithium aluminium hydride ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above

	1		
	$CH_{3}(CH_{2})3CHO + 2[H] \rightarrow$		ALLOW C ₄ H ₉ CHO + 2[H]
	CH ₃ (CH ₂)3CH ₂ OH √		$\rightarrow C_5H_{11}OH$
			ALLOW molecular formulae:
			$C_5H_{10}O + 2[H] \rightarrow C_5H_{12}O$
			DO NOT ALLOW –COH for aldehyde
			Examiner's Comments
			Very well answered. The most common error was an incorrect formula for the aldehyde.
			ANNOTATE WITH TICKS AND CROSSES ETC
			ALLOW correct structural OR displayed OR skeletal formulae OR a
			combination of above as long as unambiguous
			IGNORE names if structures are given
	M1		
	Compound F structure is a		ALLOW 3-methylbutan-2-ol if structure not given
	secondary alcohol with the formula		
	C₅H11OH √		ALLOW ECF from an incorrect secondary alcohol for M3
			e.g. pentan-2-ol \rightarrow pentan-2-one
	M2		e.g. pentan-3-ol \rightarrow pentan-3-one
	Compound F		ALLOW (3-)methylbutanone if structure not given
	= $CH_3CH(OH)CH(CH_3)CH_3 \checkmark$		IGNORE any discussion of the reactions of compound G with 2,4-
			dinitrophenylhydrazine and/or Tollens' reagent.
	M3	-	
b	Compound G = CH ₃ COCH(CH ₃)CH ₃ \checkmark	7	ALLOW 3 SF up to calculator value correctly rounded
			IF M(compound H) = 74 award 2 marks (M4 + M5)
			ALLOW ECF from incorrect calculation of amount of NaOH
			ALLOW propanoic acid if structure not given
			ALLOW ECF from incorrect compound F (alcohol) and/or incorrect compound H (carboxylic acid) to form compound I (ester).
	M4 n(NaOH) = (0.125 x 22.8/1000)		
	= 0.00285 (mol) √		
			Compounds F , G , H and I must be placed in the correct box or correctly
	M5		labelled for M2. M3, M6 and M7
	M(compound H)		
	= (0.211/0.00285 =) 74(.0) (g mol ⁻		Examiner's Comments
	1) √		
			A high scoring question with many candidates gaining full marks.
	M6 Compound H = /		Although most realised that Compound F was a secondary alcohol, fewer
	CH₃CH₂COOH ✓		candidates combined this knowledge with the information provided by
			carbon-13 NMR to deduce the correct structure of the secondary alcohol.
	M7		
	Compound I =		

			$H \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} CH$		
	с		The structural isomer is: $H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{2}} OH$ CH_{3} CH_{3} \downarrow CH_{3}	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW 2,2-dimethylpropan-1-ol Examiner's Comments A good discriminator but many correct structures were seen.
			Total	10	
1 5	а	i	Radio (waves) √	1	ALLOW a value in the range 60 – 900 MHz Examiner's Comments The interaction of materials with the low-energy radio wave region of the electromagnetic spectrum is described in the specification but this question was surprisingly poorly answered. Infrared, ultraviolet, X-rays and gamma rays were all commonly seen answers in addition to ranges of chemical shift quoted from the data sheet.
		ii	The solvent does not have any hydrogen / H / protons	1	ALLOW to prevent (¹ H nuclei from) the solvent from interfering with the NMR spectrum ALLOW does not show on the spectrum ALLOW no peak / signal (from solvent) IGNORE volatility Examiner's Comments The need for deuterated solvents was well known but some candidates confused the use of this solvent with the use of TMS as the standard for chemical shift measurements or the identification of O—H and N—H protons by proton exchange using D2O.
	b		14 🗸	1	Examiner's Comments Almost all candidates scored this mark for counting the peaks in the ¹³ C NMR spectrum.
	с		NMR analysis (5 marks) M1	7	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE analysis of ¹³ C spectrum
		1			

TMS / tetramethylsilane (which is the) standard (for chemical shift measurements) ✓ NMR analysis = 5 marks	1	ALLOW TMS is the reference OR TMS has δ = 0 (ppm) OR for calibration OR for comparison IGNORE solvent, unreactive, volatile, it gives a sharp peak Examiner's Comments This was well answered by the majority of candidates. NOTE: Each peak can be identified from: its δ value a range, e.g. "the peak between 0.8 and 2.0" its relative peak area (beware two peaks with 2 protons) its splitting (beware two triplets)
chemical shift measurements) ✓	1	 Examiner's Comments This was well answered by the majority of candidates. NOTE: Each peak can be identified from: its δ value a range, e.g. "the peak between 0.8 and 2.0" its relative peak area (beware two peaks with 2 protons) its splitting (beware two triplets)
		This was well answered by the majority of candidates. NOTE: Each peak can be identified from: • its δ value • a range, e.g. "the peak between 0.8 and 2.0" • its relative peak area (beware two peaks with 2 protons) • its splitting (beware two triplets)
NMR analysis = 5 marks		 NOTE: Each peak can be identified from: its δ value a range, e.g. "the peak between 0.8 and 2.0" its relative peak area (beware two peaks with 2 protons) its splitting (beware two triplets)
NMR analysis = 5 marks		 its δ value a range, e.g. "the peak between 0.8 and 2.0" its relative peak area (beware two peaks with 2 protons) its splitting (beware two triplets)
		 a range, e.g. "the peak between 0.8 and 2.0" its relative peak area (beware two peaks with 2 protons) its splitting (beware two triplets)
		labelling on the spectrum
M1:		ALLOW CH ₂ CHO / aldehyde IGNORE reference to phenol
Peak(s) at (δ) 9.7 = CHO √		ALLOW (four) benzene ring proton(s) IGNORE reference to phenol
M2: Peak(s) at (δ) 7.1 = C ₆ H ₄ √		
M3: Triplet at (δ) 1.3 / peak at 1.3 AND quartet (at δ 2.6) / peak at 2.6 = CH ₂ CH ₃ \checkmark	9	M3 and M4 Look for a clear link (using words or diagrams) between the two peaks
M4: Triplet at (δ) 9.7 / peak at 9.7 AND doublet (at δ 3.7) / peak at 3.7 = CH ₂ CHO \checkmark		
M5: (n+1 rule) Any one of the following \circ triplet at (δ) 1.3		ALLOW a response that implies a splitting into three for a triplet / into two for a doublet etc.
shows (C with) 2 adjacent Hs / protons OR adjacent CH ₂		ALLOW "neighbouring" Hs for "adjacent to" Hs
(because of splitting: so triplet)		IGNORE other comments about splitting once M5 has been awarded
	Peak(s) at (δ) 9.7 = CHO \checkmark M2: Peak(s) at (δ) 7.1 = C ₆ H ₄ \checkmark M3: Triplet at (δ) 1.3 / peak at 1.3 AND quartet (at δ 2.6) / peak at 2.6 = CH ₂ CH ₃ \checkmark M4: Triplet at (δ) 9.7 / peak at 9.7 AND doublet (at δ 3.7) / peak at 3.7 = CH ₂ CHO \checkmark M5: (n+1 rule) Any one of the following \circ triplet at (δ) 1.3 shows (C with) 2 adjacent Hs / protons OR adjacent CH ₂ (because of splitting: so	Peak(s) at (δ) 9.7 = CHO \checkmark M2: Peak(s) at (δ) 7.1 = C ₆ H ₄ \checkmark M3: Triplet at (δ) 1.3 / peak at 1.3 AND quartet (at δ 2.6) / peak at 2.6 = CH ₂ CH ₃ \checkmark 9 M4: Triplet at (δ) 9.7 / peak at 9.7 AND doublet (at δ 3.7) / peak at 3.7 = CH ₂ CHO \checkmark M5: (n+1 rule) Any one of the following \circ triplet at (δ) 1.3 shows (C with) 2 adjacent Hs / protons OR adjacent CH ₂ (because of splitting: so

							 benzene ring protons. Many gave a good explanation of a splitting pattern to score the fifth marking point. These marks were often achieved by the construction of a clearly labelled and well organised table. Many were able to suggest a structure for compound H. The best candidates included a 1,4 substituted benzene ring after correctly interpreting the information from the carbon-13 NMR spectrum. Candidates should avoid drawing several different structures and not indicating which one they wish to have marked. 				
			Total			10					
1 7			Compound Number of peaks	C 5 all c	D 5 orrect √	1	Examiner's Comments The interpretation of carbon-13 NMR spectra seems to be very well understood and the vast majority of candidates were able to correctly predict the number of peaks for all three compounds.				
			Total			1					
1 8	а		¹ H NMR spectrum for se chemical shift, relative δ /ppm peak area 2.0 to 3.0 1 3.3 to 4.2 2 One mark for each correct row ✓✓			2	 ALLOW δ values ± 0.2 ppm, as a range or a value within the range ALLOW a response that implies a splitting into three for a triplet / into two for a doublet Examiner's Comments Many candidates did not have the skills required to score marks on this question. Errors were made in all three columns and most often in assigning appropriate shift values from the data sheet. ALL correct for one mark 				
	b	i				1	Examiner's Comments This part was answered well by many candidates. Some missed the chiral centre on the proline moiety or added an asterisk to a carbonyl carbon.				
		i	any two from: no / fewer side effects increases the (pharmacological) activity / effectiveness Reduces / stops the need for / cost / difficulty in separating stereoisomers / optical isomers		2	IGNORE toxic / harmful IGNORE a response that implies a reduced dose IGNORE "it takes (less) time to separate" Examiner's Comments Most candidates gained this mark by stating that the use of a single stereoisomer results in fewer side effects and increased pharmacological activity. Vague answers and comments about a reduced dose did not score marks.					

		i i	$ \begin{array}{c} & & & \\ & & \\ & \downarrow^{OH} \\ H_{2N} \\ \oplus \\ & \\ & \\ \oplus \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ \\ & \\$	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + charge on H of NH ₂ groups, <i>i.e.</i> NH ₂ + IGNORE negative (counter) ions Examiner's Comments This question discriminated well. Most candidates were able to score one mark for the formula of ethanol. Only a small number of able candidates scored full marks for including the correct formulae for the protonated amine groups formed during acid hydrolysis.
		i V	idea of separating (the components / compounds) AND idea of (identifying compounds by) comparison with a (spectral) database ✓	1	 ALLOW (identifies compounds) using fragmentation (patterns) / fragment ions (but IGNORE molecular ions) IGNORE retention times Examiner's Comments To get the mark for this question candidates had to include points about the separation of the mixture and identification of the compounds. Answers based on identification using retention times or measurement of molar mass did not score the mark.
			Total	10	
1 9	а			1	
	b	i	2Na + 2CH ₃ OH → 2Na ⁺ + 2CH ₃ O ⁻ + H ₂ \checkmark	1	ALLOW 2Na + 2CH ₃ OH \rightarrow 2CH ₃ ONa + H ₂
			СH ₃ O ⁻ Вг д-		ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous. The curly arrow must start from O atom of CH ₃ O ⁻ AND must start either from a lone pair or from the negative charge.
		i	Curly arrow from CH_3O^- to carbon atom of C-Br bond \checkmark Dipole shown on C–Br bond, C^{δ^+} and Br^{δ^-} AND curly arrow from C–Br bond to the Br atom \checkmark	3	No need to show lone pair if curly arrow comes from negative charge. ALLOW S _N 1 Dipole shown on C–Br bond, C ^{δ+} and Br ^{δ-} , and curly arrow from C–Br bond to the Br atom. Correct carbocation drawn.

		i i	Products of reaction (must not be ambiguous) ✓ CH₃O ⁻ donates an electron pair AND heterolytic fission ✓	1	 AND curly arrow from CH₃O⁻ to carbocation. The curly arrow must start from the oxygen atom of the CH₃O⁻, and must start either from a lone pair or from the negative charge. ASSUME 'it' refers to CH₃O⁻
	с		Chemical shift, δ/ppmRelative peak areaSplitting pattern0.5-1.93Triplet✓3.0-4.32Quartet✓0.5-1.96Doublet✓3.0-4.31Heptet✓	4	ALLOW δ values ± 0.2 ppm, as a range or a value within the range ALLOW multiplet for heptet
	d	i	$H_{3}C \xrightarrow{O}_{C} \xrightarrow{C}_{C} \xrightarrow{C}_{O} \xrightarrow{C}_{H_{3}}$ $H_{3}C \xrightarrow{O}_{H_{3}} \xrightarrow{C}_{H_{3}} \xrightarrow{C}_{H_{3}}$	3	The curly arrow must start from O atom of CH ₃ O ⁻ AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge. ALLOW any unambiguous structure, skeletal, displayed, structural or combination.
		i i	CH₃O ⁻ accepted a proton √	1	ASSUME 'it' refers to CH₃O⁻
			Total	14	
2 0			Electrophilic substitution means benzene ring Electrophilic addition means alkene / C=C Isomer of C9H8O2 containing C=C, benzene ring AND COOH Correct isomer:	5	Concluded using data provided and conclusions from 1st two marks. ALLOW 1 mark for: $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ OR (does not gain final justification mark)

	justification in terms of number of carbon environments								
	Total	5							
	Elemental analysis and molecular formula Use of percentages to give								
	empirical formula C ₅ H ₁₀ O ₂		ANNOTATE A	NSM	ER WITH TIC	KS /	AND CROS	SES	;
	Evidence of using empirical formula AND 102 to give molecular		С:Н:О	=	58.80 / 12	:	9.87 / 1	<u> </u>	31.33 / 16
	formula = C ₅ H ₁₀ O ₂				4.90	:	9.87	:	1.96
					2.5	:	5.04	:	1
	IR Spectrum				5	:	10	:	2
2 1	Peak at ~1750 OR 1630–1820 (cm ⁻¹) AND C=O NMR analysis Peak(s) at (δ) 4.9 shows HC–O AND 1 H in environment (peak area) OR 6H on adjacent C as peak is multiplet / heptet / septet Peak at (δ) 2.2 shows HC–C=O AND 3 H in environment (peak area) OR No H on adjacent C as peak is singlet Peak(s) at (δ) 1.3 shows HC–R AND 6 H (or 2 × CH ₃) in environment (peak area) OR 1H on adjacent C as peak is doublet Structure Correct structure:	8	its relaits spli	× 58 2 × 3 × 31 eeak nce ak ca alue e e.g tiive	9.87 / 100)/1 = .33 / 100)/16 labelled on sp to C–O peak	10 = 2 ectru	n:		
			ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous						
	Allow one mark for		DO NOT ALLO	WE	CF from incor	rect	molecular f	ormu	la

	Total	8		
22	 * Please refer to the marking instruction point 10 for guidance on how to mark this question. Level 3 (5–6 marks) Structure correct AND Analysed all ¹H NMR signals with at least two supporting statements made. The analysis is clear and logically structured. The supporting statements are relevant to the correct structure drawn. Level 2 (3–4 marks) Structure has correct molecular formula AND C=O AND OH but in incorrect positions AND Analysed at least three ¹H NMR signals with one or two supporting statements made. The analysis is presented with some structure. The supporting statements are in the most-part relevant to the structure drawn. Level 1 (1–2 marks) Structure has correct molecular formula AND C=O OR OH but in incorrect positions. AND Analysed at least two ¹H NMR signals with no or one supporting statements made. The analysis is basic and communicated in an unstructured way. The relationship of the supporting evidence to the structure may not be clear. O marks No response or no response worthy of credit. 	6	Indicative scientific points may be included: Structure $ \begin{array}{c} $	not
	Total	6		